Histone methyltransferases: novel targets for tumor and developmental defects.

نویسندگان

  • Xin Yi
  • Xue-Jun Jiang
  • Xiao-Yan Li
  • Ding-Sheng Jiang
چکیده

Histone lysine methylation plays a critical role in epigenetic regulation of eukaryotes. To date, studies have shown that lysine residues of K4, K9, K27, K36 and K79 in histone H3 and K20 in histone H4 can be modified by histone methyltransferases (HMTs). Such histone methylation can specifically activate or repress the transcriptional activity to play a key role in gene expression/regulation and biological genetics. Importantly, abnormities of patterns or levels of histone methylation in higher eukaryotes may result in tumorigenesis and developmental defects, suggesting histone methylation will be one of the important targets or markers for treating these diseases. This review will outline the structural characteristics, active sites and specificity of HMTs, correlation between histone methylation and human diseases and lay special emphasis on the progress of the research on H3K36 methylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic cancer therapy: Proof of concept and remaining challenges.

Over the past few years several drugs that target epigenetic modifications have shown clinical benefits, thus seemingly validating epigenetic cancer therapy. More recently, however, it has become clear that these drugs are either characterized by low specificity or that their target enzymes have low substrate specificity. As such, clinical proof-of-concept for epigenetic cancer therapies remain...

متن کامل

Role of several histone lysine methyltransferases in tumor development

The field of cancer epigenetics has been evolving rapidly in recent decades. Epigenetic mechanisms include DNA methylation, histone modifications and microRNAs. Histone modifications are important markers of function and chromatin state. Aberrant histone methylation frequently occurs in tumor development and progression. Multiple studies have identified that histone lysine methyltransferases re...

متن کامل

MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output.

MDM2 is a key regulator of the p53 tumor suppressor acting primarily as an E3 ubiquitin ligase to promote its degradation. MDM2 also inhibits p53 transcriptional activity by recruiting histone deacetylase and corepressors to p53. Here, we show that immunopurified MDM2 complexes have significant histone H3-K9 methyltransferase activity. The histone methyltransferases SUV39H1 and EHMT1 bind speci...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation.

Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone dem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of translational research

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 2015